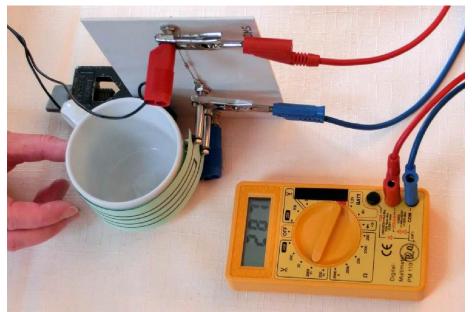
Über eine quantitative Auswertung des DMS- Experimentes

Wer mit dem DMS- Experiment mehr tun will, als den Effekt zu zeigen, kann quantitativ belastbare Daten erhalten, indem er den Widerstandswert R_D des DMS in Abhängigkeit vom Krümmungsradius misst.

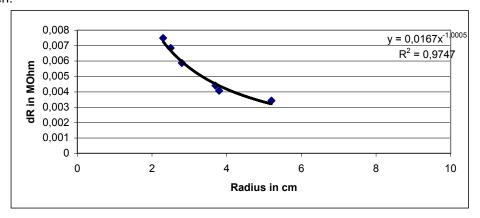


In einer Messreihe ergab sich für die Spannung, die über dem Festwiderstand abfällt:

<i>r</i> in cm	<i>UF</i> in mV	
	2,3	369
	2,5	373
	2,8	379
	3,7	388
	3,8	390
	5,2	394
	1000	415

In der letzten Zeile steht der Widerstandswert des gestreckten DMS.

Für eine Auswertung erweist es sich als sinnvoll, die Widerstandsänderung *dR* über dem Radius darzustellen.



Unter Berücksichtigung der Einheiten erhält man mit sehr guter Genauigkeit $dR = 0.0167 \text{M}\Omega \cdot 1 \text{cm/r}$.

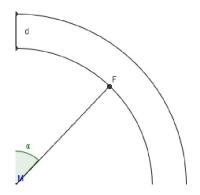
Der Auswertung der Messdaten liegt zugrunde

$$\frac{R_D}{R_F} = \frac{U_{ges} - U_F}{U_F} \text{ , also } \qquad R_D = \frac{U_{ges} - U_F}{U_F} \cdot R_F \text{ . } dR \text{ ist der Betrag der Differenz aus } R_D \textbf{(r)} \text{ und dem Wert im gestreckten Zustand.}$$

Es hat sich also ergeben $dR = 0,0167 \text{ M}\Omega \text{ cm/}r$.

Eine mathematische Modellierung hilft dabei, dieses Ergebnis zu begründen.

Dazu kann die folgende Zeichnung dienen:



- (1) Im Bogenmaß gilt sowohl $\alpha=\frac{l_0}{r}$ als auch $\alpha=\frac{l_0+\Delta l}{r+d}$ und daher zusammen $\Delta l=l_0\cdot\frac{d}{r}$. l_0 ist die gemeinsame Länge aller Graphitabschnitte in Richtung der Dehnung.
- (2) Wegen $R_D = k \cdot (l_{Graphit} + \Delta l)$ ist $dR = k \cdot \Delta l$ mit $k = \{ (R_{D,ohne\ Dehnung}) / 0,55 \text{m} \}$ (0,55 m ergab sich als Gesamtlänge $l_{Graphit}$ des Graphitstreifens am vorliegenden DMS).

Setzt man (1) in (2) ein, so erhält man

(3)
$$dR = k \cdot l_0 \cdot d \cdot \frac{1}{r}$$

Dieses Zwischenergebnis kann zufrieden machen, denn auch das Experiment ergab einen Zusammenhang vom Typ 1/r.

Bestimmen der Parameter:

 $k \cdot l_0 \cdot d$ hat den Wert 0,0167M $\Omega \bullet \mathrm{cm}$ (siehe Messwerte).

Mit bekanntem k und $l_0 = 0,53$ m erhält man für d = 0,018cm — ein angemessener Wert für die Dicke des Papierstreifens.